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A1. Overview
This supplementary material provides additional infor-

mation about the design of our TextPSG framework, the de-
tails of experiments, and more quantitative and qualitative
results. In Sec. A2, we provide a more detailed explanation
of our framework, including the region grouper, the entity
grounder, the label generator, and the inference procedure.
In Sec. A3, we provide further details on the dataset used
for evaluation, the baselines developed, and the implemen-
tation process. In Sec. A4, we provide more ablation studies
to demonstrate the effectiveness of our design, more diag-
noses of our framework for a clearer understanding of the
efficacy, additional visualization results for qualitative eval-
uation, and examples of the failure cases.

A2. More Details of TextPSG Framework
A2.1. More Details of Region Grouper

The region grouper follows the design of GroupViT [18].
The input scene image I is first split into N non-
overlapping patches and projected to be initial image seg-
ments {s0i }Ni=1, which are then passed through K group-
ing layers {Grpk}Kk=1 to be merged progressively. Each
grouping layer Grpk consists of Hk learnable grouping
centers {cki }

Hk
i=1, a Transformer [16]-based block TfmI

k for
communication between the centers {cki }

Hk
i=1 and the seg-

ments {sk−1
i }Hk−1

i=1 , and an attention-based block Attk for
assigning the segments to different centers and merging the
segments corresponding to the same center into {ski }

Hk
i=1.

Within Grpk, the grouping is performed as

{ski }
Hk
i=1 = Attk(TfmI

k({cki }
Hk
i=1, {s

k−1
i }Hk−1

i=1 )).

Note that H0 = N . Especially, the updated image seg-
ments {ŝ0i }

H0
i=1 from the communication block TfmI

1 in the
first grouping layer Grp1 will be further used by the la-
bel generator for the label prediction, as introduced in the
following.

A2.2. More Details of Entity Grounder

In the entity grounder, meaningful region-entity align-
ment can be reached automatically during training, serving
as pseudo labels for the learning of the segment merger and
the label generator. Here we provide a further explanation
of the automatic meaningful alignment.

In the entity grounder, the total fine-grained contrastive
loss Lk

fine consists of two symmetry components Lk,I→T
fine

and Lk,T→I
fine . Minimizing Lk

fine equals to minimizing
Lk,I→T
fine and Lk,T→I

fine simultaneously.

Here we take Lk,I→T
fine as an example while the other re-

mains the same. In each batch, we assume that for each
region in each image, there is at most one corresponding
entity in the corresponding caption, while all the other en-
tities in the caption and all entities in the other captions are
mismatched with the region.

To minimize Lk,I→T
fine , for each image Ii in the batch,

the model needs to maximize pk,i→i and minimize all other
pk,i→j where j ̸= i.

To minimize pk,i→j , with pk,i→j denoting the mean
value of pk,i→j

l and l for the index of the region in the image
Ii, the model needs to minimize all pk,i→j

l . Since pk,i→j
l

denotes the max cosine similarity between the l-th region
and all entities in Tj , minimizing pk,i→j

l equals pushing the
l-th region and all entities in Tj apart in the shared feature
space.

To maximize pk,i→i, the model needs to maximize all
pk,i→i
l . A global maximum is that the l-th region is close

to the corresponding entity in Ti and far from all the other
entities in the shared feature space.

By minimizing pk,i→j and maximizing pk,i→i at the
same time, the model tends to pull similar region-entity
pairs to be closer and push dissimilar pairs apart in the
shared feature space, thus reaching a meaningful region-
entity alignment automatically.



A2.3. More Details of Label Generator

Here we provide more details about the prompt-
embedding-based technique (PET) used in the label gener-
ator.

To predict the object semantics, for each image mask
mk

i , the label generator takes the updated image tokens
{p̂}Ni=1, i.e., {ŝ0i }

H0
i=1, and the mask mk

i as input, using a
prompt

a photo of [ENT]

to guide the object generation, where the [ENT] token is
expected to be the pseudo label bki .

To predict the relation predicates, for each mask pair
(mk

i ,m
k
j ), the label generator takes {p̂}Ni=1, the image

masks mk
i and mk

j , and the learnable positional embed-
dings fsub, fobj , fregion as input. For each mask pair, an
additional region mask mk

r , i.e.,

mk
r = Rec(mk

i ∪mk
j )− (mk

i ∪mk
j ),

is used to indicate the complement region of the relation,
where Rec denotes the enclosing rectangle. The fsub, fobj ,
fregion are added to {p̂}Ni=1 according to mk

i , mk
j , mk

r re-
spectively before decoding to indicate the different regions
in the image tokens. With the enhanced image tokens and
the union mask mk

i ∪mk
j ∪mk

r , the label generator uses a
prompt

a photo of [SUB] and [OBJ]

what is their relation [REL]

to guide the relation generation, where the [SUB] and
[OBJ] tokens are embedded by the pseudo labels bki and
bkj , and the [REL] token is expected to be the relation pred-
icate between (bki , b

k
j ) with bki as subject and bkj as object in

the text graph.
Note that to reduce the noise in the pseudo object and re-

lation labels from the caption-parsed text graphs, we change
all pseudo labels into their lemma form for the generation.

A2.4. More Details of Inference

Different from the training procedure, during inference,
the framework only takes a scene image I as input without
its caption, so that the entity grounder is not used. With the
given target concept sets of object semantics Co and relation
predicates Cr, the goal for inference is to generate a PSG
with its object and relation labels selected from Co and Cr.

During inference, an inference stage index linf is speci-
fied to generate the candidate image segments. The model
firstly uses the region grouper to partition I into Hlinf

segments {slinf

i }
Hlinf

i=1 , which are then merged by the seg-
ment merger based on the similarity matrix Simlinf

. Ide-
ally, after swapping rows and columns, Simlinf

should be
a block diagonal matrix in {0, 1}Hlinf

×Hlinf with a low

rank, and the merging of segments can thus be formulated
as a spectral clustering problem. However, Simlinf

is actu-
ally a noisy matrix in [0, 1]Hlinf

×Hlinf . To reduce the noise
and perform a more accurate clustering, we employ a ma-
trix recovery method [6] to recover the low-rank subspace
structure of Simlinf

, i.e., by solving a convex optimization
problem

min
Zlinf

,Elinf

∥Zlinf
∥∗ + λ∥Elinf

∥2,1,

s.t. Simlinf
= Simlinf

Zlinf
+Elinf

,

where Zlinf
denotes the recovered low-rank matrix, Elinf

denotes the noise matrix, ∥ · ∥∗ denotes the nuclear norm,
and ∥·∥2,1 denotes the l2,1 norm. λ is a hyperparameter that
is set to 0.4 in our experiments.

Then the recovered matrix Zlinf
is applied the normal-

ized cut [13] for clustering, where the segments with simi-
lar object semantics tend to be merged into the same cluster.
After this step, D merged segmentation masks {m̂i}Di=1 are
obtained.

For each merged mask m̂i, the label generator uses a
similar PET to predict the object label in Co, which are then
be used to predict the relation label in Cr. Different from
training, here, the object labels and the relation labels are
predicted in a cascaded manner. To select the label in Co
and Cr, each candidate label is embedded into the prompt
(at the [ENT] or the [REL] token) to compute its genera-
tion probability, which is then used in ranking to select the
most probable as the final prediction. Here we use a greedy
strategy in implementation to reduce the computation cost.
Following the training procedure, all target concepts in Co
and Cr are changed into their lemma form for the genera-
tion.

A3. More Details of Experiments
A3.1. More Details of Datasets for Caption-to-PSG

In our experiments, we use the Panoptic Scene Graph
dataset [19] for the evaluation of the problem Caption-
to-PSG. Compared with this dataset, the commonly-used
dataset Visual Genome (VG) [3] has three limitations that
make it less suitable for our evaluation. Firstly, VG only
uses bboxes for object location in scene graphs with no
fine-grained segmentation masks provided. Secondly, the
scene graphs in VG are not panoptic, in which only a few
objects in the scenes are covered. Thirdly, the standard
concepts [17] of object semantics and relation predicates
in VG (i.e., 150 objects and 50 relations) are not well-
defined enough, where some similar and ambiguous con-
cepts exist, such as man,men,woman, person for objects
and wears,wearing for relations. In contrast, the Panop-
tic Scene Graph dataset not only provides object location
in the form of both bboxes and segmentation masks, but



also contains a more clear, more informative, more coher-
ent class system with comprehensive and panoptic annota-
tions, which is more suitable for the evaluation of Caption-
to-PSG.

The original Panoptic Scene Graph dataset contains 133
object semantics and 56 relation predicates. However, in
the original 133 object semantics, there are still some am-
biguous classes not well-defined, such as window-blind and
window-other, floor-wood and floor-other-merged. To re-
duce the ambiguity during evaluation, we further merge the
ambiguous object semantics with their corresponding an-
notations, i.e., window-blind, window-other into window;
floor-wood, floor-other-merged into floor; wall-brick,
wall-stone, wall-tile, wall-wood, wall-other-merged into
wall. After merging, 127 object semantics and 56 relation
predicates are obtained for our evaluation.

Note that the final set of 127 object semantics consists
of 80 thing classes, which represent object classes that can
be individually recognized and segmented in an image, and
47 stuff classes, which represent object classes that usually
have a homogeneous texture or pattern and are difficult to
be segmented individually. In the Panoptic Scene Graph
dataset, objects belonging to stuff classes are not segmented
individually, with each stuff class having only one mask at
most. To accommodate this approach, during the evalua-
tion of our method and the baselines on Caption-to-PSG,
the predicted objects with the same stuff class are merged
into a single object.

A3.2. More Details of Baselines for Caption-to-PSG

Firstly, we design four baselines that strictly follow the
constraints of Caption-to-PSG for a fair comparison. In
these baselines, objects in scenes are located by bbox pro-
posals generated by selective search [15], which requires
no location priors or supervision. For each scene image, 50
proposals are generated.

• Random predicts all object semantics and relation pred-
icates fully randomly, where the score for each label is
randomly selected from [0, 1].

• Prior augments Random by predicting labels based on
the statistical priors in the training set. Specifically, during
inference, the model collects the distribution of the target
concepts Co and Cr in the training set, then follows the
distribution frequency to predict the score in [0, 1] for each
label.

• MIL performs the alignment between proposals and tex-
tual entities, using a multiple instance learning [8] strat-
egy to match the proposals and the entities in captions
implicitly. The object label prediction is formulated as
a classification problem in a large pre-built vocabulary.
Specifically, similar to [20], the model builds a large ob-
ject vocabulary with the most frequent 4,000 entities in

the captions in the training set, and the training procedure
for object prediction is a 4000-class classification prob-
lem. During inference, the model employs WordNet [9] to
match the 4000 classes with the target concepts Co. Once
the object labels are predicted, the relation labels in Cr are
predicted with the statistical prior, similar to Prior.

• SGCLIP employs the pre-trained CLIP [10] to predict
both object semantic labels and relation predicate labels.
Specifically, for objects, the model uses a prompt

a photo of a [ENT]

to obtain the embedding for each object label in Co, and
assigns the label with the highest cosine similarity to the
proposal as the prediction. For relations, the model uses a
prompt

a photo of a [SUB] [REL] a [OBJ]

to obtain the embedding for each relation label in Cr for
each object pair, and assigns the label with the highest co-
sine similarity as the prediction.

By gradually removing the constraints of Caption-to-
PSG, we set two additional baselines to further benchmark
the performance of our framework, based on the previous
work [20] for weakly-supervised scene graph generation.

• SGGNLS-o [20] is built without the constraint of no lo-
cation priors. It extracts object proposals with a detec-
tor [11] pre-trained on OpenImage [4]. Following [20], on
average, 36 object proposals are extracted for each image.
It formulates the label prediction as a classification prob-
lem within a large pre-built vocabulary, where a 4,000-
class object semantics vocabulary and a 1,000-class rela-
tion predicate vocabulary are built from the most frequent
4,000 entities and 1,000 relations in the captions in the
training set. During inference, the model employs Word-
Net [9] to match the 4000 object classes with the target
concepts Co and 1,000 relation classes with Cr.

• SGGNLS-c [20] is built without the constraint of no lo-
cation priors and no pre-defined concept sets, based on
SGGNLS-o. It uses the same proposals as SGGNLS-o.
In SGGNLS-c, the target concept sets for inference are
known during training. It formulates the label prediction
as a classification problem within Co and Cr, where all en-
tities and relations from captions in the training set are pre-
mapped to Co and Cr through an accurate human-refined
mapping as pseudo labels during training.

A3.3. More Details of Implementation

In TextPSG, the input image resolution for training is
384×384, and the resolution for inference is 512 for the
shortest side. The patch size of the region grouper is 16.



The filtering threshold in the entity grounder is set to -0.5.
We train TextPSG on the COCO Caption dataset [2] for 100
epochs. We use a batch size of 1,728, a learning rate of
0.0001, and the AdamW optimizer [7] with weight decay as
0.05.

A4. More Results on Caption-to-PSG
A4.1. More Ablation Studies

Here we conduct additional ablation studies to further
evaluate the effectiveness of two design choices in our
framework.
Positional Embeddings in PET. In Tab. 1, we compare the
different strategies for indicating the different regions in the
image tokens in PET. Based on the full PET in TextPSG
(row 3), we first remove the region embedding fregion (row
2) and further remove the subject embedding fsub as well
as the object embedding fobj (row 1). The results show that
the design of fsub and fobj is very important to the genera-
tion, without which the model will suffer a significant per-
formance drop. And the design of fregion can further im-
prove the performance by indicating the compliment region
information in the image tokens.

fsub fobj fregion
PhrDet SGDet

N3R100 N5R100 N3R100 N5R100
✘ ✘ ✘ 2.33 2.58 0.45 0.6
✔ ✔ ✘ 10.67 11.3 2.81 3.21
✔ ✔ ✔ 12.74 14.37 4.77 5.48

Table 1. Ablation Study on Positional Embeddings in PET.
‘fsub’, ‘fobj’, and ‘fregion’ denotes the learnable positional em-
beddings for indicating the subject region, the object region, and
the complement region in the image tokens.

Filtering Threshold. In Tab. 2, we investigate the effec-
tiveness of setting a filtering threshold θ to filter out the
mismatched image region and caption entity pairs. The re-
sults show that compared with the region-entity alignment
without filtering (row 1), the introduced θ (row 2) is simple
yet effective in improving the performance significantly.

Thresh PhrDet SGDet
N3R100 N5R100 N3R100 N5R100

✘ 10.39 10.8 3.09 3.19
✔ 12.74 14.37 4.77 5.48

Table 2. Ablation Study on Filtering Threshold. ‘Thresh’ de-
notes the filtering threshold θ for filtering out the mismatched im-
age region and caption entity pairs.

A4.2. More Model Diagnosis.

Here we provide more diagnoses of our framework for a
clearer understanding of the efficacy. We answer the fol-
lowing questions. Q1: How significantly does the pre-
trained GroupViT [18] enhance the learning our frame-
work? Q2: How does our framework perform with partial

ground truth given? Q3: How does our framework perform
with BLIP [5] replaced by CLIP [10] for the label predic-
tion?

Pre-trained PhrDet SGDet
Weights N3R100 N5R100 N3R100 N5R100

✘ 0 0 0 0
COCO Caption [2] 1.99 2.51 0.07 0.1

CC12M [1, 12]+YFCC [14] 12.74 14.37 4.77 5.48
Table 3. Examination on Pre-trained GroupViT Weights.

In Tab. 3, we examine the efficacy of the pre-trained
GroupViT [18] in two more training settings: no pre-
trained GroupViT weights are used (row 1); initializing
weights of GroupViT pre-trained solely on the COCO Cap-
tion dataset [2] (row 2). The results show that a pre-trained
GroupViT is necessary for the effectiveness of our model.
Furthermore, GroupViT pre-trained on a large dataset (row
3) can provide very strong location priors and thus facili-
tates our model significantly (answering Q1).

Method SGCls PredCls SGDet
N3R100 N5R100 N3R100 N5R100 N3R100 N5R100

PSGCLIP 7.38 9.11 25.72 26.16 2.83 3.23
Ours 9.51 10.79 36.28 39.79 4.77 5.48

Table 4. More Evaluation Settings.

We evaluate the performance of our model on two addi-
tional settings with partial ground truth: (i) SGCls, where
ground truth object masks are known; (ii) PredCls, where
ground truth object masks and semantics are known. The
correctness definition is the same as SGDet. The results are
shown in Tab. 4 row 2. The results show that both the seg-
mentation and the relation/entity label prediction still have
a large space to improve, especially the label prediction. A
better method for label prediction in our challenging setting
may improve the performance significantly (answering Q2).

Substituting BLIP with CLIP in our framework for the
label prediction, akin to PSGCLIP, results in performance
decline across all settings as per Tab. 4. The significant
drop in PredCls demonstrates CLIP’s insensitivity to nu-
anced relation predicates (answering Q3).

A4.3. More Visualization for Qualitative Evaluation

We provide more visualization of the predicted PSGs by
TextPSG in Fig. 1 for further qualitative evaluation, com-
paring with the baseline SGGNLS-o.

A4.4. Example of Failure Cases

Compared with the baseline SGGNLS-o, Fig. 1 shows
that our framework is capable of providing more fine-
grained labels to each pixel in the image, and is able to reach
a panoptic understanding of the scene. However, there are
some limitations to our framework that result in some fail-
ure cases.



Firstly, the strategy we use to convert the semantic seg-
mentation into instance segmentation is not entirely effec-
tive. As shown in Fig. 1, our strategy can successfully sep-
arate the two cows in (ii), but mistakenly divides the car
behind the tree into three parts in (i).

Secondly, our framework faces difficulty in locating
small objects in the scene due to limitations in resolution
and the grouping strategy for location. As shown in Fig. 1
(ii) and (iv), our method can identify large objects such as
large cows, birds, grass, and sea, but struggles to locate rel-
atively small objects such as small cows in (ii) and people
in (iv).

Thirdly, the relation prediction of our framework re-
quires enhancement, as it is not adequately conditioned on
the image. As shown in Fig. 1 (i), the relations between the
blue mask of the car and the green mask of the car are pre-
dicted as both being in front of, which is not reasonable. In
this case, beside may be a more appropriate prediction (in
this case, the first limitation about the segmentation conver-
sion also exists).
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Figure 1. More Qualitative Comparison between SGGNLS-o (a) and Ours (b). For each method, the results of object location are
shown on the left, while the results of scene graph generation are shown on the right. For SGGNLS-o and Ours, the visualized relations
are picked from the top 10 triplets in the scene graph (the predicate score should be greater than 0.6). For SGGNLS-o, only proposals
matched with ground truth (only requires a correct location, ignores the semantics) are visualized.
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multiple-instance learning. Advances in neural information
processing systems, 10, 1997. 3

[9] George A. Miller. WordNet: A lexical database for English.
In Speech and Natural Language: Proceedings of a Work-
shop Held at Harriman, New York, February 23-26, 1992,
1992. 3

[10] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya
Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry,
Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning
transferable visual models from natural language supervi-
sion. In International conference on machine learning, pages
8748–8763, 2021. 3, 4

[11] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun.
Faster r-cnn: Towards real-time object detection with region
proposal networks. Advances in neural information process-
ing systems, 28, 2015. 3

[12] Piyush Sharma, Nan Ding, Sebastian Goodman, and Radu
Soricut. Conceptual captions: A cleaned, hypernymed, im-
age alt-text dataset for automatic image captioning. In Pro-
ceedings of the 56th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers), pages
2556–2565, July 2018. 4

[13] Jianbo Shi and J. Malik. Normalized cuts and image segmen-
tation. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 22(8):888–905, 2000. 2

[14] Bart Thomee, David A Shamma, Gerald Friedland, Ben-
jamin Elizalde, Karl Ni, Douglas Poland, Damian Borth, and
Li-Jia Li. Yfcc100m: The new data in multimedia research.
Communications of the ACM, 59(2):64–73, 2016. 4

[15] Jasper RR Uijlings, Koen EA Van De Sande, Theo Gev-
ers, and Arnold WM Smeulders. Selective search for ob-
ject recognition. International journal of computer vision,
104:154–171, 2013. 3

[16] Ashish Vaswani, Noam M. Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz Kaiser, and
Illia Polosukhin. Attention is all you need. In NIPS, 2017. 1

[17] Danfei Xu, Yuke Zhu, Christopher B Choy, and Li Fei-Fei.
Scene graph generation by iterative message passing. In Pro-
ceedings of the IEEE conference on computer vision and pat-
tern recognition, pages 5410–5419, 2017. 2

[18] Jiarui Xu, Shalini De Mello, Sifei Liu, Wonmin Byeon,
Thomas Breuel, Jan Kautz, and Xiaolong Wang. GroupViT:
Semantic segmentation emerges from text supervision. In
Proceedings of the IEEE/CVF Conference on Computer Vi-
sion and Pattern Recognition (CVPR), pages 18134–18144,
June 2022. 1, 4

[19] Jingkang Yang, Yi Zhe Ang, Zujin Guo, Kaiyang Zhou,
Wayne Zhang, and Ziwei Liu. Panoptic scene graph gen-
eration. In ECCV, 2022. 2

[20] Yiwu Zhong, Jing Shi, Jianwei Yang, Chenliang Xu, and Yin
Li. Learning to generate scene graph from natural language
supervision. In ICCV, 2021. 3


